- (51) Y. Saito, J. Takemoto, B. Hutchinson, and K. Nakamoto, *Inorg. Chem.*, 11, 2003 (1972).
- (52) In fact for Co(CN)₆³⁻ a large Stokes shift corresponding to an increase of 0.10 Å in the metal-carbon equilibrium distance of 1.89 Å has been observed.⁵³ On this basis we predict that the excited-state Co(CN)₆⁴⁻-

 $^{*}\text{Co}(\text{CN})_{6}^{3-}$ exchange reaction should proceed $\sim 10^{5}$ times faster than the corresponding ground-state exchange reaction.

(53) K. W. Hipps and G. A. Crosby, *Inorg. Chem.*, **13**, 1543 (1974).
(54) I. B. Berlman, "Handbook of Fluorescence Spectra of Aromatic Molecules", 2nd ed., Academic Press, New York, N.Y., 1971.

The Chemistry of 2-Naphthyl Bis[bis(dimethylphosphino)ethane] Hydride Complexes of Fe, Ru, and Os. 2. Cleavage of sp and sp³ C–H, C–O, and C–X Bonds. Coupling of Carbon Dioxide and Acetonitrile

S. D. Ittel,* C. A. Tolman,* A. D. English, and J. P. Jesson

Contribution No. 2502 from the Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898. Received June 10, 1977

Abstract: Reactions of HMNp(dmpe)₂ (Np = 2-naphthyl, dmpe = Me₂PCH₂CH₂PMe₂, M = Fe, Ru, or Os) with HCN, terminal acetylenes, and molecules having activated sp³ C-H bonds to give new HMR(dmpe)₂ complexes are described. A major factor determining the stability of the products appears to be the stability of the carbanion R⁻. Rate studies indicate two distinct mechanisms: (1) rapid direct electrophilic attack on the naphthyl hydride, observed with HCN, and (2) slow, rate-determining reductive elimination of naphthylene (rate constant k_1), followed by rapid oxidative addition of RH to the 16-electron intermediate [M(dmpe)₂]. Kinetic studies on the reaction of CH₃CN with HFeNp(dmpe)₂ in THF give $k_1 = 0.022 \pm 0.003$ min⁻¹ at 25 °C and 0.10 ± 0.1 min⁻¹ at 40 °C. Initial formation of cis-HFeCH₂CN(dmpe)₂, followed by slow isomerization to the more stable trans isomer is consistent with a three-center transition state for the oxidative addition. Coupling of acetonitrile and CO₂ as a route to methyl cyanoacetate has been demonstrated. Reactions of the naphthyl hydrides with some esters and ethers to cleave C-O bonds, and with alkyl and aryl halides to cleave C-X bonds, are also described.

Introduction

Because of the potential importance of selective reactions of hydrocarbons under mild conditions, there has been a rapidly growing interest in the activation of C-H bonds by transition metal complexes.¹ Many examples of intramolecular² metallation reactions are known. Intermolecular² reactions to cleave C-H bonds are much more rare, particularly those cases where the HMC adduct has sufficient stability to be isolated or characterized spectroscopically; oxidative additions of the sp C-H bond of HCN³ or of terminal acetylenes^{3d,4} are the best known. Recent examples of intermolecular cleavage of sp³ C-H bonds include the reactions of photolytically generate $(\pi - C_5 H_5)_2 W$ with p-xylene or mesitylene to give $(\pi$ -C₅H₅)₂W(CH₂Ar)₂ complexes,⁵ and of (cyclohexyne)-Pt(Ph₂PCH₂CH₂PPh₂) with CH₃NO₂, CH₃COCH₃, CH₃COPh, or NCCH₂Ph to give (cyclohexenyl)PtR(diphos).⁶ Acetonitrile adds to certain IrL_4^+ complexes $[L_4 = (PMe_3)_4$ or $(Me_2PCH_2CH_2PMe_2)_2$ to give complexes of the type $Hlr(CH_2CN)L_4^{+.7}$

Compound 1, formed in the pyrolysis of $HRuNp(dmpe)_2^8$ [dmpe = Me₂PCH₂CH₂PMe₂, Np = 2-naphthyl], was prob-

ably the first example of an intermolecular sp³ C-H cleavage, though that fact was not recognized until an X-ray structure⁹ was carried out at a later date.

In the preceding paper¹⁰ we have described the spectroscopic characterization of the HMNp(dmpe)₂ complexes [M = Fe

(2a), Ru (2b), or Os (2c)] in solution and their reactions with H_2 and various Lewis base ligands. The spectroscopic properties of the products—particularly the exceptionally low ν_{CO} frequency (1812 cm^{-1}) in (CO)Fe(dmpe)₂ and the high-field shift (δ 0.6 ppm) of the ethylenic protons in (C₂H₄)-Fe(dmpe)₂—indicate a very high electron density on the $Fe(dmpe)_2$ fragment. In this paper the implications of this high electron density for cleavage of C-H bonds having sp or sp³ hybridization at carbon are explored. Cleavage of C-O and C-halogen bonds is also described. Rate studies show two distinct types of oxidative addition mechanisms: direct electrophilic attack on HMNp(dmpe)₂, and oxidative addition to intermediate [M(dmpe)₂] formed by a rate-determining reductive elimination of naphthylene. The coupling of acetonitrile and CO_2 to give cyanoacetic acid is also described. A succeeding paper¹¹ in this series will deal with reactions of sp² C-H bonds. Some of the results described in the present paper have been reported briefly.12

Results and Discussion

Cleavage of sp C-H Bonds. As described earlier,¹⁰ diphenylacetylene reacts with **2a** to form a π -bonded acetylene complex. In contrast, acetylene itself reacts with cleavage of the sp C-H bond to form the hydridoacetylide complex **3**. The

Table I. ³¹P and ¹H NMR Data^{*a*} for HMR(dmpe)₂ Complexes Where R = Acetylide or Cyanide

	31 P	'H NMR ^c			
complex	NMR ^b	hydride	dmpe Me	other	
trans-HFeC ₂ H(dmpe) ₂ (3)	-73.5 s	-18.31 qu (45)	1.56, 1.16 br s	1.77 qu (2.5)	
trans-HFeC ₂ Ph(dmpe) ₂	-73.9 s	-17.76 qu (45)	1.48, 1.16 br s	7.5-6.7 m	
trans-HFeC ₂ - t -Bu(dmpe) ₂	-74.1 s	-18.61 qu (45)		1.38 s	
trans-HFeCN(dmpe) ₂ (4a)	-73.8 s	-18.29 qu (46)	1.47, 1.02 br s		
trans-HRuCN(dmpe) ₂ (4b)	-43.4 s	-12.70 qu (21.5)	1.45, 1.13 br s		
cis-HRuCN(dmpe) ₂	d	-9.21 dq (82, 24)			
trans-HOsCN(dmpe) ₂ (4c)	- 3.6 s	-13.5 qu (18)	1.50, 1.27 br s		
cis-HOsCN(dmpe) ₂	е	-10.72 dq (59, 20)			

^{*a*} In C₆D₆. Abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; qu, quintet; m, multiplet; br, broad. ^{*b*}Chemical shifts in parts per million (negative downfield) from external 85% H₃PO₄. ^{*c*} Chemical shifts in parts per million (positive downfield) from internal Me₄Si. Values of J_{PH} in parentheses in hertz. When there are two numbers in parentheses, the first refers to J_{PH} trans. ^{*d*} The solution contained about 15% cis isomer. ³¹P: -45.8 ddd, -39.4 ddd, -39.5 td, -28.7 dt; $J_{AB} = 262$, $J_{AC} = 27$, $J_{AD} = 22$, $J_{BC} = 27$, $J_{BD} = 16$, $J_{CD} = 20$ Hz. ^{*e*} After heating for 18 h at 60 °C the ¹H spectrum showed ~30% cis isomer; a ³¹P spectrum was not recorded at this point. Further heating for 60 h at 75 °C caused complete conversion to the trans isomer.

Table II. IR Stretching Frequencies^a in HMR(dmpe)₂ Where R = Acetylide or Cyanide

νMH	$\nu_{C \equiv N}$ or $\nu_{C \equiv C}$	$-\Delta \nu^{b}$
1725	1894	80¢
1720	2036	74
1730	2060	
1750	2043	42
1790	2082, 2062	24
1865	2020, 2055	31
	^{<i>ν</i>мн 1725 1720 1730 1750 1790 1865}	𝑘𝔥 𝑘𝔅≡𝔊 or 𝑘𝔅≡𝔅 1725 1894 1720 2036 1730 2060 1750 2043 1790 2082, 2062 1865 2020, 2055

^{*a*} In cm⁻¹ (in C₆D₆) with an uncertainty of $\pm 3 \text{ cm}^{-1}$ for most bands, $\pm 5 \text{ cm}^{-1}$ for the broader ν_{MH} bands. ^{*b*} The decrease in $\nu_{C \equiv N}$ or $\nu_{C \equiv C}$ on forming the trans metal hydride complex. ^{*c*} The value of $\nu_{C \equiv C}$ is for the gas-phase Raman: G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", Van Nostrand, Princeton, N.J., 1964, p 290. ^{*d*} Mixtures of cis and trans isomers. The higher frequency $\nu_{C \equiv N}$ band in each case is assigned to the cis isomer.

structure is established spectroscopically. The ¹H NMR spectrum (data in Table 1) shows the hydride as a quintet at high field. The unbroken C-H bond also appears as a quintet, but at lower field and with a much smaller coupling to the four equivalent phosphorus nuclei. The ligand methyl resonances appear as two singlets (each ~ 6 Hz wide) at δ 1.56 and 1.16, assigned to Me^a and Me^b, respectively, in 3. The exceptionally large downfield shift of Me^a [compare δ 1.35 and 1.21 in *trans*-HFeNp(dmpe) $_2^{10}$] is a consequence of the proximity of the methyl group to the C=C bond. The ³¹P {¹H} NMR spectrum shows a singlet, as expected. The IR spectrum (Table 11) shows bands assignable to stretching vibrations of the HFeC=CH unit. Phenyl- and tert-butylacetylenes give analogous complexes. Stretching frequencies of 1720 (ν_{FeH}) and 2036 cm⁻¹ ($\nu_{C=C}$) in HFeC=CPh(dmpe)₂ can be compared with 1850 and 2035 cm⁻¹ in HFeC=CPh-(Ph₂PCH₂CH₂PPh₂)₂.^{3d,4c}

While the reaction of terminal acetylenes with **2a** requires a few hours to go to completion at 25 °C, HCN reacts on mixing to give **4a**.¹³ No cis isomer was detected in the ¹H

Figure 1. IR spectra of ~ 0.1 M solutions in C₆D₆ in a 0.1-mm cell: (a) *trans*-HFeCN(dmpe)₂, (b) a mixture of *cis*- and *trans*-HRuCN(dmpe)₂ (70% cis by NMR).

NMR spectrum run soon (15 min) after mixing; the spectrum did not change on standing. HCN also reacts rapidly with **2b**, in this case to give an equilibrium mixture of about 85% cis and 15% trans isomer, as determined by ¹H NMR. Figure 1 shows IR spectra of HFeCN(dmpe)₂ and HRuCN(dmpe)₂; the stronger, higher frequency ν_{RuCN} band is tentatively assigned to the major cis isomer. The reaction of HCN with **2c** gives ~30% *cis*- and 70% *trans*-HOsCN(dmpe)₂. The decreasing trans:cis isomer ratio in the sequence Fe > Os > Ru is a general feature of HMR(dmpe)₂ complexes.

Cleavage of sp³ C-H Bonds. The reaction of acetonitrile with 2a to give *trans*-HFeCH₂CN(dmpe)₂ was cited earlier.¹² Kinetic studies show that the reaction proceeds through *cis*-HFeCH₂CN(dmpe)₂ as an intermediate. ¹H NMR spectra of the hydride region at various times are shown in Figure 2. After 25 min at 25 °C the only hydride resonance easily observed is that of *cis*-HFeCH₂CN(dmpe)₂ at δ -12.5. The doublet of quartets is a consequence of three nearly equal cis P-H couplings and a fourth smaller trans coupling. The near absence of HFeNp(dmpe)₂ resonances in the spectrum after 25 min is due to the fact that most of the Fe is present as DFeC₆D₅(dmpe)₂.¹⁴ At 47 min the cis hydride NMR pattern is stronger but a new quintet from *trans*-HFeCH₂CN(dmpe)₂

Figure 2. 100-MHz [']H NMR spectra of the hydride region during the reaction of \sim 0.2 M DFe(C₆D₅)(dmpe)₂ with \sim 0.3 M CH₃CN in C₆D₆ at ambient temperature.

is evident at higher field. Eventually the isomerization goes to completion and only the trans isomer is observed. In addition to the hydride quintet, the final spectrum (Table 111) shows a quintet at -0.6 ppm with an area twice as large and a much smaller $J_{PH} = 5.5$ Hz, assigned to the protons of the $-CH_2CN$ group. In agreement with the trans geometry, the aliphatic region shows two types of dmpe methyl resonances at δ 1.26 and 1.05. ³¹P{¹H} NMR spectra, followed with time, show the growth and decay of an ABCD pattern assigned to *cis*-HFeCH₂CN(dmpe)₂, going finally to the singlet of the trans isomer. The composition of the final product is also established by its elemental analysis (Experimental Section) and highresolution mass spectrum.¹⁵

Infrared spectra taken at various times during the reaction of HFeNp(dmpe)₂ and CH₃CN (2250 cm⁻¹ in THF) show the gradual loss of their bands and the appearance of a new ν_{CN} band of *cis*-HFeCH₂CN(dmpe)₂ at 2180 cm⁻¹. This band grows and subsequently decays, as shown in Figure 3, to be replaced by a stronger band from *trans*-HFeCH₂CN(dmpe)₂ at 2165 cm⁻¹. The infrared spectrum provides a convenient method for detailed kinetic studies of the reaction (see below). The C=N stretching frequencies are unusually low for α cyanomethyl complexes. Literature frequencies are 2183 cm⁻¹ in *trans*-HPtCH₂CN(PPh₃)₂¹⁶ and 2206 cm⁻¹ in CuCH₂CN.¹⁷ The low frequency suggests that the CH₂CN group in HFeCH₂CN(dmpe)₂ has significant carbanion character.¹⁸

The Ru complex 2b reacts much more slowly with acetoni-

Figure 3. Time dependence of the absorbance at 2180 cm^{-1} [cis-HFeCH₂CN(dmpe)₂] in the reaction of 0.2 M CH₃CN with 0.04 M HFeNp(dmpe)₂ in THF at 40 °C (0.5-mm cell). Added naphthylene: (a) none, (b) 0.25 M, (c) 1.0 M.

trile than **2a.** After 3 days at room temperature a solution of **2b** and CH₃CN in C₆D₆ showed only ~5% reaction. This implies a half-life of reaction of about 40 days. After heating for 22 h at 60 °, the reaction is nearly complete to give *cis*-HRuCH₂CN(dmpe)₂ as the only detectable product. The hydride resonance appears as a doublet of quartets and the -CH₂CN as a stronger doublet of quartets at lower field with smaller P-H couplings (Table 111). The ³¹P{¹H} NMR spectrum shows the expected ABCD pattern while the infrared spectrum (Table 1V) shows bands assigned to ν_{CN} and ν_{RuH} . Cleavage of the C-H bond in our system is in contrast to the formation of (π -CH₃CN)Ru(PPh₃)₄·CH₃CN (ν_{CN} bands at 1912 and 2254 cm⁻¹) reported for the reduction of RuCl₂(PPh₃)₄ in CH₃CN.¹⁹

The osmium complex 2c is even less reactive than 2b. No reaction with excess CH₃CN was detected after heating the C₆D₆ solution for 18 h at 60 °C, or even on further heating for 60 h at 75 °C. The only change in the solution was isomerization of the originally nearly all *cis*-HOsNp(dmpe)₂ to ~25% trans.

Other activated CH_3X compounds (X = -COR, -CO₂R, -SOR, $-SO_2R$) also react with 2a and 2b to form $HMCH_2X(dmpe)_2$ complexes. Table 111 gives NMR data with the Fe compounds listed first, in order of increasing high-field ¹H NMR shift of the trans hydride. (This is invariably found at higher field than the cis resonances.) The Ru complexes give hydride resonances at lower field than the corresponding Fe complexes; the same is true for the resonance of MCH_2X protons, which in some cases were obscured by dmpe resonances when M = Ru. The cis hydride resonances of both Fe and Ru complexes (Table III) appear as the X portions of apparent AB₃X spin systems (actually ABCDX spin systems). The coupling between the hydride and the trans phosphorus atom is smaller than those observed between the hydride and the cis phosphorus atoms for all iron complexes; the reverse is true for the ruthenium complexes.

In most cases NMR spectra of the iron complexes were run after the solutions had stood overnight at room temperature. Under these conditions product isomerization to the trans iron hydrides was usually so complete that cis hydride resonances were weak or (as in the case of acetronitrile) absent from the spectra. In the methyl acetate and acetone cases the terminal CH₃ groups, which appeared as singlets well separated from the dmpe resonances, gave a convenient and accurate measure of the isomer distributions, which were 77% trans for HFe-CH₂COOCH₃(dmpe)₂ and 85% trans for HFe-CH₂COOCH₃(dmpe)₂. HRuCH₂COCH₃(dmpe)₂, by contrast, was only 30% trans, reflecting the greater preference of Ru for cis isomers. ¹H NMR spectra of HRuCH₂COCH₃(dmpe)₂ at temperatures from -46 to 82 °C showed only a very small

Table III. ³¹P and ¹H NMR Data^{*a*} for HMR(dmpe)₂ Complexes Where $R = CH_2X$, CHXY, or SiMe₃

		'H NMR			
complex	³¹ P NMR	hydride ^d	$-CH_2X$ or $-CHXY$	other	
trans-HFeCH ₂ SOCH ₃	-67.9 s	-21.67 qu (49)	0.84 qu (5)	2.37 s	
<i>trans</i> -HFeCH ₂ CN	-72.9 s	-23.20 qu (47.5)	-0.59 qu (5.5)		
cis-HFeCH ₂ CN	b,c	$-12.50 \mathrm{dq} (38, 58)$	× · · /		
trans-HFeCH ₂ SO ₂ CH ₃	-71.4 s	-23.31 qu (50.5)	0.98 gu (5.4)	2.65 s	
trans-HFeCH ₂ COOCH ₂ CH ₃ (15a)	-72.3 s	-24.15 qu (51)	0.27 qu (6)	4.04 q (7), 0.95 t (7)	
trans-HFeCH ₂ COOCH ₃ (15b)	-72.2 s	-24.24 qu (48)	0.24 qu (5.7)	3.48 s	
cis-HFeCH ₂ COOCH ₃	Ь	-12.22 m		3.60 s	
trans-HFeCH ₂ COCH ₃	-72.9 s	-25.54 gu (50.5)	0.70 qu (5.3)	2.05 s	
cis-HFeCH ₂ COCH ₃	Ь	-12.30 dq (43, 56)		2.14 s	
trans-HFeCHCN(COOCH ₃) (5)	-70.7 s	-26.74 qu (48)	3.12 br	4.01 s	
trans-HFeCHCN(CN) (6	-70.7 s	e			
cis-HFeCHCN(CH ₂ CN) (7)	Ь	-13.69 dg (38, 56)			
trans-HFeCHCN(CH ₃) (8)	-72.8 s	-27.50 gu (48)			
cis-HFeCHCN(CH ₃)	Ь	-13.22 dq (36, 59)			
trans-HFeCHC ₆ H ₅ (COCH ₃) (11)	-69.9 s	-32.37 qu (50)	3.17 qu (4)	1.39 s	
trans-HFeCH ₂ COCH ₂ C ₆ H ₅ (12)	-72.6 s				
trans-HFeSiMe ₃	-74.9 s	-23.4 gu (55)		0.12 s	
cis-HFeSiMe ₃	b	-14.3 dq (20, 50)		0.62 s	
cis-HRuCH ₂ CN	Ь	-8.95 dg (93, 25)	0.37 dq (13.6, 6.0)		
trans-HRuCH ₂ COCH ₃	-41.6 s	-16.74 qu (22.5)		2.12 s	
cis-HRuCH ₂ COCH ₃	b	$-8.89 \mathrm{dq} (92.5, 24.5)$		2.49 s	

^{*a*} In C₆D₆. See Table I for units and abbreviations. For brevity the two dmpe ligands are omitted in the list of complexes. ^{*b*} Incompletely resolved ABCD pattern. ^{*c*} The cis isomer was seen as a transitory intermediate. ^{*d*} When there are two numbers in parentheses, the first refers to J_{P-H} trans and the second to J_{P-H} cis. ^{*e*} The compound is too insoluble in C₆D₆ to see the hydride.

Table IV. Selected IR Stretching Frequencies^{*a*} in HMR (dmpe)₂ Complexes Where $R = CH_2X$ or CHXY

complex	ν _{MH}	$\nu_{C=N}$ or $\nu_{C=0}$	$-\Delta \nu^{b}$	solvent
trans-HFeCH ₂ CN	1765	(2181), ¢ 2161	90	C ₆ D ₆
trans-HFeCH ₂ COOCH ₃	1765	1644	98	C_6D_6
HFeCH ₂ COCH ₃ ^d	1770	1604, 1585, 1576 ^d		THF
trans-HFeCHCN(COOCH ₃) (5)	1795	2170, 1620	90, 135	C_6D_6
trans-HFeCHCN(CN) (6)	1805	2133	139	THF
cis-HFeCHCN(CH ₂ CN) (7)	1735e	2178, 2230	73, 21	THF
HFeCHCN(CH ₃) $(8)^f$	1770	2163	82	C ₆ D ₆
cis-HRuCH ₂ CN(dmpe) ₂	1760 <i>g</i>	2171	80	C_6D_6
$HRuCH_2COCH_3(dmpe)_2^f$	1795	1585	126	C_6D_6

^{*a*} In cm⁻¹ with an uncertainty in most cases of ± 3 . The broad ν_{MH} bands are more uncertain and are reported to the nearest 5 cm⁻¹. For brevity the two dmpe ligands are omitted in the list of complexes. ^{*b*} The decreases in $\nu_{C=N}$ or $\nu_{C=0}$ on forming the metal hydride complex. Values of $\nu_{C=N}$ for the free nitriles were measured in THF, because C₆D₆ absorbs strongly in the 2250-cm⁻¹ region. ^{*c*} For the transient cis isomer in THF. ^{*d*} This is a mixture of *cis*- and *trans*-HFeCH₂COCH₃(dmpe)₂ and (dmpe)₂ HFeCH₂COCH₂FeH(dmpe)₂. ^{*e*} Freshly prepared C₆D₆ solution. ^{*f*} A mixture of cis and trans isomers is indicated by NMR. ^{*g*} In Nujol.

temperature dependence²⁰ in the isomerization equilibrium, consistent with a very small ΔH between the two isomers.

As expected, the doubly activated compounds (of general type XCH₂Y) methyl cyanoacetate, malononitrile, and succinonitrile also give HFeR(dmpe)₂ adducts (5-7). Although 6 is too insoluble in C₆D₆ for the hydride resonances to be seen easily in the ¹H NMR spectrum, the ³¹P NMR singlet at -70.7 ppm (the same shift as 5) and strong 1R band at 2133 cm⁻¹ leave little doubt as to its structure. 5 and 7 show bands at slightly higher frequency (Table 1V), as assigned to ν_{CN} of the α -CN group. The β -CN group in 7 cannot be observed in C₆D₆ because of strong solvent absorption between 2200 and 2300 cm⁻¹ (seen in Figure 1). Surprisingly, 7 is exclusively the cis isomer.

Propionitrile gives a mixture of products, one cis and one trans, as shown by ³¹P{¹H} and the hydride region ¹H NMR spectra. Unfortunately, the aliphatic region in the ¹H NMR is too complex, even at 220 MHz, to be readily assigned. The branched structure HFeCHCN(CH₃)(dmpe)₂ (8) seems more likely than the linear HFeCH₂CH₂CN(dmpe)₂ since the ν_{CN} band at 2165 cm⁻¹ is very similar to that of *trans*-HFeCH₂CN(dmpe)₂; a higher frequency would be expected if the Fe were bonded to a β carbon. ν_{CN} in *trans*-

HPt(CH₂)_nCN(PPh₃)₂ is 2083 for n = 1 and 2245 cm⁻¹ for $n = 3.^{16}$

Infrared spectra of solutions of 7 and 8 also showed unexpected bands at about 2050 cm^{-1} . To investigate bands in the 2250 cm^{-1} region, the C₆D₆ solvent was stripped off (about 1 week after the initial spectra were run) and the residues were redissolved in THF. The solution containing 7 showed bands for the two types of cyano groups at 2178 and 2230 cm⁻¹. The band at 2055 cm⁻¹ was stronger than before. The solution which had contained 8 showed only a strong 2055-cm⁻¹ band, and no remaining bands of 8. The new band has the same frequency as *trans*-HFeCN(dmpe)₂ in THF; the assignment was confirmed by ¹H NMR.

The appearance of HFeCN(dmpe)₂ is consistent with eq 1 and 2, although we did not identify the olefins formed. These unusual reactions appear to require β hydrogens, as they did not occur with 5 and 6. Apparently the Fe-C bond in HFeCN(dmpe)₂, with an sp-hybridized carbon, is strong enough to drive reactions 1 and 2.

$$\rightarrow$$
 HFeCN(dmpe)₂ + CH₂=CH₂ (2)

In some cases cleavage of two C-H bonds in the same molecule can lead to dinuclear iron hydrides. Thus a ³¹P{¹H} NMR spectrum run 5 h after mixing a solution of CD₃COCD₃ and **2a** in a 0.5:1 ratio showed 1:1:1 triplets²¹ at -72.0 and -70.1ppm (each with $J_{PD} \sim 7$ Hz) assigned to *trans*-DFe-CD₂COCD₃(dmpe)₂ and **9.** No **9** was observed in another experiment with acetone in excess.

Surprisingly, no **10** was detected when acetylene and **2a** were allowed to react in a 0.5:1 ratio. Space-filling models show that

 $-C \equiv C$ - does not provide a long enough bridge to relieve crowding of the ligands on the two metal centers.

Methyl ethyl ketone reacts with **2a** to give a complex mixture of products with at least six different hydride resonances ranging from -8.5 to -33.6 ppm. Two of the resonances were identified as belonging to unreacted *cis*- and *trans*-HFeNp(dmpe)₂. The presence of unreacted starting complex, after days in the presence of 50% excess ketone, shows that methyl ethyl ketone gives less stable products than acetone.

Phenylacetone gives a mixture of 11 and 12 in a 20:1 ratio. The ³¹P NMR chemical shift of 12 is close to that of *trans*-HFeCH₂COCH₃(dmpe)₂ (Table II). The hydride resonance of 11 is at exceptionally high field, apparently a general feature for HFeR(dmpe)₂ complexes were R is attached by a secondary carbon. Structure 11 is supported by the ν_{CO} band at 1591 cm⁻¹. The predominance of this isomer can be rationalized in terms of resonance stabilization of the carbanion fragment.

Formation of HFeR(dmpe)₂ complexes by cleavage of sp³

C-H bonds does not require that R contain strongly electron-withdrawing groups like carbonyl or nitrile, but does require that R^- be a relatively stable carbanion.²² Cyclopentadiene gives 13,²³ identified as a monohapto cyclopentadiene

complex by the ring proton NMR resonances in a 2:2:1 intensity ratio at δ 6.50 d (8), 6.30 d (8), and 4.00 br at ambient temperature. The hydride appears as a quintet at δ – 30.2 (J_{PH} = 49.5 Hz) in the ¹H NMR spectrum and as a band at 1788 cm⁻¹ in the 1R. A trans geometry is supported by the ³¹P NMR singlet at -69.9 ppm. The cyclopentadienyl chemical shifts are close to those reported (δ 6.3, 6.0, and 3.5) for the fluxional η_1 ring of Fe(C)₂(η_5 -C₅H₅)[η_1 -C₅H₅]²⁴ in the slow exchange limit. The complex **13** is one of the rare examples of a nonfluxional η_1 -cyclopentadienyl complex. The tightly bound dmpe ligands lock **13** into an 18-electron configuration, with no readily available 16-electron pathway for exchange.

The reaction of 2a with fluorene (14) in slight excess did not produce a cyclopentadienyl-type adduct. A large excess of 14

gave aryl C-H cleavage (identified by characteristic NMR shifts)¹¹ rather than reaction at the methylene. This result is attributed to unfavorable steric interactions with the two benzo groups. Similar results were obtained with triphenylmethane and indene.

We have not observed reactions of 2a with CH₃CF₃, pentane, or cyclopropane. Reaction with trimethylsilane did, however, give a mixture of about 60% *cis*- and 40% *trans*-HFeSiMe₃(dmpe)₂. The trimethylsilyl adduct represents the only case in which the substrate had no means of coordination to the metal prior to oxidative addition. Unfortunately, we were not able to confirm addition through a cis intermediate because both cis and trans isomers were observed even in the initial stages of reaction.

Cleavage of C-O Bonds. Ethyl acetate reacts only at a C-H bond adjacent to the ester carbonyl to give 15a. The Fe-CH₂CO₂- group gives a quintet in the ¹H NMR at about 0.3 ppm downfield of Me₄Si, with $J_{PH} = 6$ Hz, in addition to the hydride resonance at -24.2 ppm ($J_{PH} \sim 50$ Hz).

Methyl acetate gives 15b with NMR parameters (Table III) very similar to those of 15a; however, it also gives $\sim 25\%$ of 16a, identified by a quintet at 3.3 ppm upfield of Me₄Si in the ¹H NMR spectrum with $J_{PH} = 7$ Hz, and in the ³¹P{¹H} NMR

spectrum a singlet at -70 ppm. Similar NMR parameters (Table 11) are obtained in the reaction of methyl benzoate to give **16b**, which has 1R bands assigned to coordinated benzoate at 1565 and 1346 cm⁻¹. About 70% of the product is **16b**, the rest being isomers resulting from aromatic C-H bond cleavage.¹¹ Ethyl benzoate gives *no* detectable C-O bond cleavage. One possible explanation of the difference in behavior of methyl acetate or benzoate as opposed to the ethyl esters is steric, since the methyl group has a smaller cone angle (90°) than the ethyl group (102°).²⁵

Methyl dimethylphosphonite, $CH_3P(O)(OCH_3)_2$, reacts exclusively by cleavage of a C-O bond, giving 17. The ¹H

NMR spectrum shows three types of substrate methyl, the one on iron appearing as a quintet $(J_{PH} = 7.0 \text{ Hz})$ at -3.61 ppm. The ³¹P{¹H} NMR spectrum shows two types of phosphorus in a 4:1 intensity ratio at -68.4 and -16.2 ppm assigned to the dmpc and phosphonite resonances, respectively; no P-P coupling was resolved. At equilibrium anisole gives exclusively 18, with a ³¹P{¹H} NMR singlet at -68.4 ppm. Cleavage of the methyl-oxygen bond of anisole, but not of THF, is probably a consequence of the stability of the phenoxide ion. Work on other substituted benzenes¹¹ indicates that a methoxy group deactivates the aromatic C-H bonds.

The $CH_2NO_2^-$ anion is also very stable; however, treatment of **2a** with CH_3NO_2 caused immediate destruction of the complex. The only ³¹P{¹H} NMR resonances detected were those of oxidized dmpe. By contrast $lr(dmpe)_2^+$ is more resistant to destructive oxidation and $[H1rCH_2NO_2(dmpe)_2]^+$ can be isolated.⁷

Cleavage of C-Halogen Bonds. Methyl iodide reacts with 2a to give $CH_3Fel(dmpe)_2$ rather than the isomeric HFe-CH₂I(dmpe)₂. NMR data are given in Table V.

NCCH₂Cl (50% excess) reacts with **2a** to give a mixture of trans products with the following ³¹P{¹H} NMR chemical shifts and approximate percentages: -68.1 (50%), -64.0 (10%), and -58.3 ppm (40%). The last is clearly assigned to *trans*-FeCl₂(dmpe)₂, on the basis of ³¹P{¹H} NMR chemical shift and the ¹H NMR spectrum. The proton spectrum also showed a sharp resonance at δ 0.60 assigned to CH₃CN. No resonances were observed at higher field; however, a weak IR band at 2176 cm⁻¹ suggests the presence of some FeCH₂CN.

Excess chlorobenzene, allyl chloride, $CDCl_3$, and HCl also gave *trans*-FeCl₂(dmpe)₂ as the major product.²⁶ The latter

Table V. ³¹P and ¹H NMR Data^{*a*} for CH₃FeX(dmpe)₂ Complexes

		'H NMR		
complex	³¹ P NMR	CH ₃ Fe	other	
CH ₃ FeOCOCH ₃	-70.2 s	-3.29 qu (7.3)	3.60 s	
$(H_3FeOCOC_6H_5)$	-70.0 s	-3.18 qu (7.0)		
$CH_3FeOP(O)CH_3$ (OCH ₃) (17)	-68.4 s	-3.61 qu (7.0)	3.48 d (10), 0.96 d (17)	
$CH_3FeOC_6H_5$ (18)	-68.4 s	-3.47 qu (7.0)		
CH ₃ Fel	-64.1 s	-2.60 qu (7.3)		

^{*a*} In C_6D_6 . Shift conventions and abbreviations as in Table I.

two reactions appeared to occur immediately upon mixing. The reaction of CDCl₃ with **2b** (50% excess CDCl₃, heated overnight at 60 °C) gave about 20% *trans*-RuCl₂(dmpe)₂,¹⁰ but the major product was **19**, identified by its ABCD ³¹P{¹H} NMR pattern (-48.6, -37.4, -36.2, and -19.1 ppm) and assignment of the aromatic hydrogens in the proton spectrum.²⁷ Thus the major reaction is given by

 $HRuNp(dmpe)_{2} + CDCl_{3} \rightarrow ClRuNp(dmpe)_{2} + CHDCl_{2}$ (3)

The CHDCl₂ produced was clearly identified by its 1:1:1 triplet pattern ($J_{HD} = 0.7 \text{ Hz}$) in ¹H NMR. Structure **19** below can

be confidently drawn with P_A trans to Cl on the basis that its chemical shift (-48.6 ppm) is well downfield of those of P_B and P_C (-37.4 and -36.2 ppm), which are close together and therefore represent phosphines trans to each other. An ordering of ³¹P{¹H} NMR chemical shifts based on the trans ligand in the sequence H < P < Cl was observed earlier in Rh(I) complexes.²⁸

The cis P-P coupling constants (Hz) in **4b**, **2b**,¹⁰ and **19** show an interesting trans effect. The ³¹P nuclei are given subscript designations showing their order from low to high field. Couplings to P_C in **4b** are uniformly larger than in **2b** by

5-14 Hz, but the other ${}^{2}J_{PP}$ are the same to within 3 Hz. Couplings to P_A in **19** are uniformly larger than those to P_D in **2b** by 2-9 Hz, but the other ${}^{2}J_{PP}$ are the same to within 2 Hz.

Table VI. Kinetics of Reaction of CH_3CN with $HFeNp(dmpe)_2$ in THF

temp, °C	[CH ₃ CN], M	[HNp] added, M	$10^{2}k_{3}^{a}, a_{min^{-1}}^{a}$	1 m, ^b min	10 ² κ, ^c min ⁻¹
25	0.4	0.0	$(0.16)^d$	110	2.8
	1.2	0.0	0.14	130	2.3
	3.8	0.0	$(0.16)^{d}$	130	2.2
	3.9	0.0	0.17	150	1.7
	0.16	0.16	0.17	210	1.0
	mean		0.16 ± 0.2		2.2 ± 0.3^{3}
40	0.2	0.0	3.4	15	12
	0.33	0.0	3.1	16	11
	0.5	0.0	3.0	14	14
	4.7	0.0	1.5	20	12
	0.2	0.25	2.4	22	7.6
	0.33	0.25	2.6	19	9.2
	4.7	0.25	1.9	20	10.3
	0.2	0.5	2.1	28.	5.8
	0.33	0.5	2.5	23	7.0
	1.0	0.5	2.6	20	8.5
	0.2	1.0	1.9	35	4.0
	0.33	1.0	2.1	30	5.0
	1.0	1.0	2.0	24	7.5
	4.7	1.0	1.2	26	8.8
	mean		2.3 ± 0.5		

^{*a*} Determined from the slope of a plot of $\ln [A_{\infty}(2165) - A(2165)]$ against *t*. ^{*b*} Time to the maximum value of A(2180). ^{*c*} Pseudo-firstorder rate constant for the appearance of A(2180). Obtained by successive approximations of eq 8. ^{*d*} Not actually determined, but taken to be the mean of the others. ^{*e*} Mean for runs without added naphthylene.

It appears that the values of cis ${}^{2}J_{PP}$ depend on the electronegativity of the ligands trans to the phosphorus nuclei in question, decreasing in the order CN > Cl > H \gtrsim Np.

Reactions of HFeCH₂CN(dmpe)₂ with CO and CO₂. Reactions were carried out to see if CO or CO₂ could be inserted into the metal-carbon bond of the acetonitrile adduct. Reaction of preformed HFeCH₂CN(dmpe)₂ with CO overnight at room temperature gave a partial reaction according to

$$HFeCH_2CN(dmpe)_2 + CO \rightarrow (CO)Fe(dmpe)_2 + CH_3CN$$
(4)

No aldehyde or $HFeCOCH_2CN(dmpe)_2$ was detected. Even heating for 18 h at 60 °C under 15 psig CO did not give complete reaction. This shows that reductive elimination of acetonitrile is much slower than elimination of naphthylene from **2a**.

In another experiment **2a** partially dissolved in neat CH₃CN after stirring for 4 h to give an 1R band at 2176 cm⁻¹ assigned to HFeCH₂CN(dmpe)₂. Within 5 min of adding CO₂, all the solids dissolved to give a yellow solution of a cyanoacetate complex with strong, broad, new bands at 1585 and 935 cm⁻¹. After stirring overnight, little if any of the 2176-cm⁻¹ band remained. Heating overnight at 60 °C gave a new, strong band of free cyanoacetic acid at 1730 cm⁻¹. Treatment with Br₂ or 1₂ gave free cyanoacetic acid and a product without the bands at 1585 and 935 cm⁻¹. Further treatment with CH₃OH/BF₃ gave NCCH₂COOMe, detected by gas chromatography/mass spectroscopy.

Coupling of acetonitrile and CO_2 by a transition metal complex is a novel reaction without much precedent. It has been achieved with some closely related electron-rich complexes of Ir(1).⁷ Some metal hydrides react with CO_2 to give metal formates.²⁹

Kinetics of the Reaction of CH₃CN with HFeNp(dmpe)₂. Kinetic studies were carried out to suggest possible mechanisms for this reaction. The sharp 1R bands of ν_{CN} in *cis*- and *trans*-HFeCH₂CN(dmpe)₂ were used to follow the reaction

Figure 4. Plot of $1/\kappa$ against $1/[CH_3CN]$ for the reaction of CH₃CN with HFeNp(dmpe)₂ in THF at 40 °C, with various concentrations of added naphthylene. The error bars show an uncertainty of $\pm 10\%$.

of CH₃CN with **2a** in THF. This solvent was chosen because it does not react with **2a** and is transparent in the IR in the region of interest. Figure 3 shows that added naphthylene inhibits the formation of *cis*-HFeCH₂CN(dmpe)₂, but not the rate of its isomerization to the trans isomer. The extent of the inhibition, however, depends on the concentration of acetonitrile. This can be seen in the data obtained at 40 °C in Table V1. Most of the runs were carried out at this temperature to obtain conveniently measurable rates.

On the basis of the 16- and 18-electron rule,³⁰ we anticipated that the reaction would proceed as shown in Scheme $1.^{31}$ Applying the steady-state approximation to the reactive intermediate [Fe(dmpe)₂] gives the kinetic equivalent of two consecutive first-order reactions:

$$HFeNp(dmpe)_2 \stackrel{\circ}{\rightarrow} cis \cdot HFeCH_2CN(dmpe)_2$$

$$\xrightarrow{k_3}$$
 trans-HFeCH₂CN(dmpe)₂ (5)

where

$$1/\kappa = 1/k_1 + k_{-1}[\text{HNp}]/k_1k_2 \cdot 1/[\text{CH}_3\text{CN}]$$
(6)

A plot of $1/\kappa$ against $1/[CH_3CN]$ should give a series of lines which intersect the y axis at a common point $(1/k_1)$, and whose slopes (s) are proportional to [HNp]. That this rate law is indeed followed, within the experimental accuracy, is shown by Figures 4 and 5. The value of k_1 , the rate constant for reductive elimination of naphthylene, is about 0.10 min⁻¹ at 40 °C. Note that in the absence of added naphthylene the rate of formation of cis-HFeCH₂CN(dmpe)₂ is essentially independent of $[CH_3CN]$, and k_1 is rate determining. The value of k_1 determined from the CH₃CN reaction rate at 25 °C is 0.022 \pm 0.003 min^{-1} (Table V1). This is equal (within experimental error) to the value of $0.020 \pm 0.004 \text{ min}^{-1}$ determined earlier¹⁰ from rates of CO reaction at 25 °C, consistent with rate-determining loss of HNp in both cases. The temperature dependence of k_1 , while not accurately determined, gives ΔH_1^{\dagger} ~ 22 kcal/mol and $\Delta S_1^{\ddagger} \sim 0$.

Scheme I

Figure 5. Plot of the slopes of lines in Figure 4 against the concentration of added naphthylene.

From the slope (k_1/k_1k_2) of Figure 5 and the value of k_1 , we find that $k_2/k_1 \sim 3$ at 40 °C, i.e., [Fe(dmpe)₂] reacts with CH₃CN in preference to naphthylene by a factor of about 3.

The data in Table VI show that k_3 , the isomerization rate constant, is essentially independent of [CH₃CN] and [HNp], as expected. The temperature dependence of k_3 gives $\Delta H_3^{\ddagger} \sim 32$ kcal/mol and $\Delta S_3^{\ddagger} \sim 28$ eu.

Mechanism of Oxidative Additions. The fact that cis-HFeCH₂CN(dmpe)₂ is the kinetically preferred product, even though it is the thermodynamically less stable isomer, is consistent with a three-center transition state **20** for the oxidative

addition step. An analogous structure can be drawn for the oxidative addition of H_2 .¹⁰ While we find this esthetically pleasing, we cannot rule out pathways involving prior coordination of the -CN group (though we saw no spectroscopic evidence for such intermediates). Oxidative addition (C-C cleavage) of cyanogen to Pt(PPh_3)_4 gives *cis*-Pt(PPh_3)_2(CN)_2 initially, which then isomerizes to *trans*-Pt(PPh_3)_2(CN)_2.³² Corain³³ favors coordination of cyanogen as a Lewis base prior to oxidative addition. N-Bonded cyanogen complexes have been observed in some analogous reactions of NiL₄ complexes.³⁴

The failure of 1,1,1-trifluoroethane to react with 2a supports the position that prior coordination of a substrate is necessary; however, we do not know that HFeCH₂CF₃(dmpe)₂ would be more thermodynamically stable than HFeNp(dmpe)₂. Oxidative addition of trimethylsilane could not involve prior coordination, but this reaction might involve a free radical chain mechanism.

Most of the oxidative addition and Lewis base adduct forming reactions of **2a** proceed at about the same rate and therefore probably involve reductive elimination of naphthylene as a first step in each case. In contrast, the reactions of HCN, HCl, I₂, and TCNE occur essentially instantaneously, and the naphthylene must remain coordinated in the first step. The rate differences are even more striking with **2b**, where the half-life for naphthylene loss is ~40 days. Electrophilic attack prior to loss of naphthylene is consistent with the observation⁸ that reaction of **2b** with DCl gives naphthylene labeled by deuterium on C-2, the carbon from which the metal is cleaved.

Experimental Section

All manipulations were carried out in a dry nitrogen atmosphere. All solvents were dried by standard techniques. Melting points were measured under nitrogen and are uncorrected. The preparation of $Fe(dmpe)_2H(C_{10}H_7)$ has been described previously¹⁰ and all other reactants were commercially available. The ³¹P{¹H} NMR spectra were recorded on a Bruker HFX-90 spectrometer at 36.43 MHz. Proton spectra were recorded on Varian HR-220 and XL-100 spectrometers. Analyses were carried out in our analytical facilities.

Preparation of *trans*-**HFe**(**CH**₂**CN**)(**dmpe**)₂. A solution of HFeNp(dmpe)₂ (0.48 g, 1.0 mmol) in tetrahydrofuran (20 mL) was treated with an excess of acetonitrile (0.52 mL, 0.41 g, 10 mmol). The mixture was stirred overnight and the color lightened from gold to yellow. The solution was filtered to remove suspended solids and the solvent was removed under vacuum. The solids were suspended in pentane/ether, collected by vacuum filtration, and dried under vacuum, yield 60%, mp 183 °C.

Anal. Caled for $FeP_4C_{14}H_{35}N$: C, 42.3; H, 8.88. Found: C, 42.2; H, 8.93.

Preparation of *trans*-HFe(C_2 Ph)(dmpe)₂. The reaction was carried out in a manner analogous to the previous reaction, using phenyl-acetylene (0.220 mL, 0.20 g, 2 mmol), yield 60%, mp 235 °C.

Anal. Calcd for FeP₄C₂₀H₃₈: C, 52.4; H, 8.36. Found: C, 52.1; H, 8.50.

Spectroscopic data are given in Tables I and II.

Microscale Reactions. Typically 0.1 mmol of $HMNp(dmpe)_2$ in a small test tube was treated with 0.15 mmol of reactant in 0.8 mL of C_6D_6 . Reactions with gases were carried out by adding the gas by hypodermic syringe to a serum capped tube containing the metal complex in C_6D_6 .

When reactions of iron complexes were allowed to proceed overnight at room temperature, the mixtures were usually filtered to remove solid precipitates before running ¹H NMR spectra. For ³¹P NMR spectra the same solutions were washed into 10-mm tubes with 1 mL of fresh solvent. IR spectra were usually run on these solutions or after stripping the NMR solvent and redissolving the residue in THF. One of the more involved microscale reactions is detailed below.

Reaction of HFe(CH₂CN)(dmpe)₂ with CO₂. Solid 2a was dissolved in neat CH₃CN at room temperature to preform the trans acetonitrile adduct. After 4 h, the resultant suspension was placed under an atmosphere of CO₂. There was a relatively rapid reaction to give a yellow solution of the cyanoacetate complex having new infrared bands at 1585 and 935 cm⁻¹. The CN stretching vibration expected around 2250 cm⁻¹ was masked by the solvent. After 24 h, the reaction was essentially quantitative as measured by NMR. Free cyanoacetic acid $(\nu_{C=0} 1730 \text{ cm}^{-1})$ was liberated by thermolysis (60 °C for 24 h) or halogenolysis of the yellow solution. The only observed phosphoruscontaining product after treatment with Br₂ was Fe(dmpe)₂Br₂. The yield of cyanoacetic acid was judged to be high as indicated by the infrared spectra. The suspension was filtered and treated with CH₃OH/BF₃ to give methyl cyanoacetate which was detected by GC/MS. No attempt was made to assess the yield of the esterification.

Kinetics of Reaction of CH₃CN with HFeNp(dmpe)₂. Reactions were carried out in a 0.5-mm IR cell in a Barnes Engineering Model 104 variable temperature chamber, whose temperature was monitored by a thermocouple. Solutions containing 0.04 M HFeNp and variable concentrations of CH₃CN and added naphthylene in deoxygenated THF were prepared under N₂ and quickly transferred by syringe to the N₂-flushed, preheated IR cell. Spectra were repetitively swept over the range 2400-1900 cm⁻¹, and absorbances determined at 2180 [*cis*-HFeCH₂CN(dmpe)₂] and 2165 cm⁻¹ [*trans*-HFeCH₂CN-(dmpe)₂] as a function of time. Typical plots of A(2180) against time are shown in Figure 3. A(2165) - A(2165)] against time are linear over 3 half-lives, once A(2180) has passed through its maximum.

Rate data at 25 and 40 °C are given in Table VI. Values of κ were determined from $t_{\rm m}$, the time required for A(2180) to pass through a maximum value, by solving the transcendental equation

$$\exp[-\kappa t_{\rm m}] = k_3 / \kappa \exp[-k_1 t_{\rm m}] \tag{7}$$

by successive approximation. This was most conveniently done by rearranging as in

$$\kappa_{n+1} = k_3 \exp[(\kappa_n - k_1)l_m]$$
 (8)

where κ_n is the *n*th approximation to κ and κ_n+1 is the (n + 1)th.

Ainscough et al. / Iron Porphyrin Phenoxides

Acknowledgments. We are grateful to D. W. Reutter, M. A. Cushing, Jr., G. Watunya, R. O. Balback, F. W. Barney, and A. Pawlowski for skilled technical assistance. We also wish to thank S. F. Layton for high-resolution mass spectra and F. Kitson for gas chromatography/mass spectroscopy. Helpful discussions with G. W. Parshall and T. Herskovitz of this department are appreciated. We are also grateful to Professor Corain for a copy of his review³³ prior to publication.

References and Notes

- (1) G. W. Parshall, Acc. Chem. Res., 8, 113 (1975); 3, 139 (1970).
- (2) As we use these terms, intramolecular metalation refers to cleavage of a C-H bond in a ligand which is already held to the metal by some remote atom, as in P-coordinated triphenylphosphine. Intermolecular metalation involves no such remote coordination; we do not, however, exclude the possibility, for example, of $\pi\text{-coordination}$ of a terminal acetylene prior to C–H bond cleavage.
- 98, 2156 (1976); (d) S. D. Ittel, C. A. Tolman, P. J. Krusic, A. D. English, and J. P. Jesson, *Inorg. Chem.*, in press. (4) (a) J. P. Collman and J. W. Kang, *J. Am. Chem. Soc.*, **89**, 884 (1967); (b)
- H. Nelson, H. B. Jonassen, and D. M. Roundhill, Inorg. Chem., 8, 259 (1969); (c) T. Ikariya and A. Yamamoto, J. Organomet. Chem., 118, 65 (1976)
- (5) K. Elmitt, M.L. H. Green, R. A. Forder, I. Jefferson, and C. K. Prout, J. Chem. Soc., Chem. Commun., 747 (1974).
- (6) M. A. Bennett, G. B. Robertson, P. O. Whimp, and T. Yoshida, J. Am. Chem. Soc., 95, 3028 (1973). (7) A. D. English and T. Herskovitz, J. Am. Chem. Soc., 99, 1648 (1977); private
- communication.
- (8) J. Chatt and J. M. Davidson, J. Chem. Soc., 843 (1965)
- (9) F. A. Cotton, B. A. Frenz, and D. L. Hunter, J. Chem. Soc., Chem. Commun., 755 (1974).
- (10) C. A. Tolman, S. D. Ittel, A. D. English, and J. P. Jesson, J. Am. Chem. Soc., 100, 4080 (1978). (11) C. A. Tolman, S. D. Ittel, A. D. English, and J. P. Jesson, *J. Am. Chem. Soc.*,
- submitted
- (12) S. D. Ittel, C. A. Tolman, A. D. English, and J. P. Jesson, J. Am. Chem. Soc.,

98. 6073 (1976).

- (13) The mass spectrum of HFeCN(dmpe)₂ shows a very weak parent ion peak (m/e 383) and a stronger M -1 (m/e 382.0862 calcd vs. 382.0835 observed).
- (14) At equilibrium at 25 °C an initially 0.1 M solution of HFeNp(dmpe)₂ in C₆D₆
- (14) At equilibrium at 25 °C an initially 0.1 M solution of hereinplomber in CeD₆ is about 90% DFeC₆D₅(dmpe)₂ and only 10% HFeNp(dmpe)₂.1
 (15) The mass spectrum of HFeCH₂CN(dmpe)₂ shows a weak parent ion peak (*m*/e 397) and a stronger M 1 [*m*/e 396.099 08 vs. 396.0991 calcd for FeCH₂CN(dmpe)₂⁺]. The base peak is *m*/e 356 [Fe(dmpe)₂⁺].
- (16) R. Ros, R. Bataillard, and R. Roulet, J. Organomet. Chem., 118, C53 (1976).
- (17) T. Tsuda, T. Nakatsuka, T. Hirayama, and T. Saegusa, J. Chem. Soc., Chem. Commun., 557 (1974)
- (18) I. N. Juchnovski and I. G. Binev, J. Organomet. Chem., 99, 1 (1975), describe IR studies of the acetonitrile carbanion.
- (19) E. O. Sherman, Jr., and P. R. Schreiner, J. Chem. Soc., Chem. Commun., 3 (1976).
- The cis:trans ratio in toluene-d₈ was 2.2 at -46 °C and 1.6 at 82 °C. (20)
- (21) There was also a 1:1:1 triplet of comparable intensity at -74.7 ppm due to trans-DFeC₆D₅(dmpe)₂. (22) pK₈ of a variety of carbon acids are given in D. J. Cram, "Fundamentals of Carbanion Chemistry", Academic Press, New York, N.Y., 1965, and in ref 11
- (23) Small amounts of ferrocene and H₂Fe(dmpe)₂ were also produced.
 (24) M. J. Bennett, F. A. Cotton, A. Davison, J. W. Faller, J. J. Lippard, and S. M. Morehouse, *J. Am. Chem. Soc.*, 88, 4371 (1966).
- (25) C. A. Tolman, Chem. Rev., 77, 313 (1977).
- (26) FeCl₂(dmpe)₂ produced from allyl chloride was confirmed by its mass spectrum. The strong parent ion showed the expected isotopic pattern: measd 426.0186 vs. 426.0179 calculated.
- (27) H₃, 8.60 dd (8, 3.5); H₁, dq (4.5, 1.0); H_{5,8}, 7.85, 7.80 d (8); H_{6,7}, 7.41, 7.30 t (7.5). See ref 10, Figure 2, for the meaning of the subscripts.
 (28) C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 200 C (200 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, and J. P. Jesson, *J. Am. Chem. Soc.*, 201 C); C. A. Tolman, P. Meakin, D. L. Lindner, 201 C); C. Lindner, 201 C); C. Li
- 96, 2762 (1974).
- (29) E. I. Becker and M. Tsutsui, Organomet. React. 5, 313 (1975).
- (30) C. A. Tolman, *Chem. Soc. Rev.*, 1, 337 (1972).
 (31) ³¹P[¹H] NMR studies in which the reaction was followed with time show that cls- and trans-HFeNp(dmpe)2 isomers equilibrate rapidly relative to the rate of loss of naphthylene. Thus only the total concentration of HFeNp(dmpe)₂ is written. (32) M. Bressan, G. Favero, B. Corain, and A. Turco, *Inorg. Nucl. Chem. Lett.*,
- 7, 203 (1971).
- (33) B. Corain, M. Basato, and A. Warsame, Chim. Ind. (Milan), submitted.
- (34) C. A. Tolman and E. J. Lukosius, Inorg. Chem., 16, 940 (1977).

Iron Porphyrin Phenoxides: Models for Some Hemoglobin Mutants

E. W. Ainscough,*1 A. W. Addison,² D. Dolphin,² and B. R. James²

Contribution from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5. Received July 3, 1978

Abstract: Variously substituted phenoxides (L) react with [Fe(PPIXDBE)]20 (PPIXDBE is the protoporphyrin IX di-tertbutyl ester dianion) to produce five-coordinate high-spin complexes Fe(PPIXDBE)L which display spectroscopic properties similar to those of the Met form of the α mutant chain of HbM Boston. The addition of pyridine or 1-methylimidazole (L') to Fe(PPIXDBE)L at 77 K produced low-spin six-coordinate complexes Fe(PPIXDBE)LL' which were studied spectroscopically. With the strongly basic 2,6-dimethoxyphenoxide (L), the above reaction was studied at 298 K, where for L' = 1-methylimidazole the binding constant was approximately 100 M^{-1} in CH₂Cl₂. The Fe(PPIXDBE)LL' complexes were made in an attempt to mimic the Fe(III) in the α chain of Met HbM Iwate; however, the latter is high spin. With excess p-nitrophenoxide in CH₂Cl₂, Fe(PPIXDBE)(OC₆H₄-4-NO₂) forms Fe(PPIXDBE)(OC₆H₄-4-NO₂)₂⁻, which exhibits a high-spin EPR spectrum at 77 K. Addition of phenoxides or fluoride to iron(II) protoporphyrin ester systems produces species such as Fe(P- $PIXDBE)X_2^{2-}$ (X = OR or F), similar to those found previously with methoxide and hydroxide ions. The addition of CO to a bisphenoxy species, in Me₂SO, results in a splitting of the Soret band at 438 nm into two bands at 434 and 413 nm, which are attributed respectively to a carbonyl (phenoxide) species and a carbonyl species which contains no phenoxide. The visible spectral data support the view expressed by others that upon reduction of HbM Iwate at pH 6.5 by Na2S2O4 the iron-tyrosine bond is broken.

Introduction

One class of hemoglobin mutants HbM have their iron atoms, in either the α or β chain, permanently oxidized in vivo to Fe(111), and have the proximal or distal histidines in these chains replaced by tyrosines which are bound to the Fe(III)

[e.g., HbM Boston ($\alpha_2^{\text{distal His-58} \rightarrow \text{Tyr}}\beta_2$),³ HbM lwate $(\alpha_2^{\text{proximal His-87} \rightarrow \text{Tyr}}\beta_2),^4$ HbM Hyde Park $(\alpha_2\beta_2^{\text{proximal His-}})$ $\hat{g}_{2} \rightarrow Tyr$),⁴ and HbM Saskatoon ($\alpha_2\beta_2^{\text{distal His-63-+Tyr}}$].⁵ In HbM Milwaukee $(\alpha_2\beta_2^{Va1-67\rightarrow Glu})^6$ valine-67 is replaced by glutamic acid, a position four residues or one helical turn removed from the distal histidine, the glutamyl residue binding